Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Vapor‐based deposition techniques are emerging approaches for the design of carbon‐supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt‐pCVD) approach is employed to deposit different Pt entities on mesoporous N‐doped carbon (MPNC) nanospheres to design high‐performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50‐250) and deposition temperature (225–300 °C) are investigated. The Pt‐pCVD process results in highly dispersed ultrasmall Pt clusters (≈1 nm in size) and Pt single atoms, while under certain conditions few larger Pt nanoparticles are formed. The best MPNC‐Pt‐pCVD electrocatalyst prepared in this work (250 pulses, 250 °C) reveals a Pt HER mass activity of 22.2 ± 1.2 A mg−1Ptat ‐50 mV versus the reversible hydrogen electrode (RHE), thereby outperforming a commercially available Pt/C electrocatalyst by 40% as a result of the increased Pt utilization. Remarkably, after optimization of the Pt electrode loading, an ultrahigh Pt mass activity of 56 ± 2 A mg−1Ptat ‐50 mV versus RHE is found, which is among the highest Pt mass activities of Pt single atom and cluster‐based electrocatalysts reported so far.more » « less
-
Situation awareness plays an important role in disaster response and emergency management. Displaying real-time location-based social media messages along with videos, pictures, and hashtags during a disaster event could help first responders improve their situation awareness. A geo-targeted event observation (Geo) Viewer was developed for monitoring real-time social media messages in target areas with four major functions: (1) real-time display of geo-tagged tweets within the target area; (2) interactive mapping functions; (3) spatial, text, and temporal search functions using keywords, spatial boundaries, or dates; and (4) manual labeling and text-tagging of messages. Different from traditional web GIS maps, the user interface design of GeoViewer provides the interactive display of multimedia content and maps. The front-end user interface to visualize and query tweets is built with open source programming libraries using server-side MongoDB. GeoViewer is built for assisting emergency responses and disaster management tasks by tracking disaster event impacts, recovery activities, and residents’ needs in the target region.more » « less
-
Abstract We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η ⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R ⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η ⊕ for the conservative HZ is between (errors reflect 68% credible intervals) and planets per star, while the optimistic HZ occurrence is between and planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.more » « less
An official website of the United States government
